功能:Promise是处理异步的优秀方案,它不仅可以通过链式操作帮助我们拜托回调地狱,还可以在链式操作中的任何时刻捕获异常。
promise支持链式调用:

举例:
1 2 3 4 5 6 7 8 9 10 11 12 13
| // 同步resolve var promise1 = new Promise( (resolve, reject) => { resolve("this is promise1 resolve"); } ).then( (msg) => { console.log(msg); }, (err) => { console.log(err); } );
|
var promise = 这部分可以无视,我仅仅用于代码里标记一下demo的次序。这个例子体现了最基础用法,给resolve传入一个字符串终结当前的Promise的状态,因为Promise被终结,因此该字符串会被回调给then中的(msg) => {…}函数,从而实现串联。
1 2 3 4 5 6 7 8 9 10 11 12 13
| // 同步reject var promise2 = new Promise( (resolve, reject) => { reject("this is promise2 reject"); } ).then( (msg) => { console.log(msg); }, (err) => { console.log(err); } );
|
和上个例子差不多,只是调用了reject,这样会回调(err) => {….}。
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| // 同步catch var promise3 = new Promise( (resolve, reject) => { reject("this is promise3 reject catch"); } ).then( (msg) => { console.log(msg); } ).catch( (err) => { console.log(err); } );
|
如果我没有在then()里提供reject的回调函数,那么这个reject事件会继续向后移动,直到遇到catch会被处理。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| // 异步resolve var promise4 = new Promise( (resolve, reject) => { var promise4_1 = new Promise( (resolve, reject) => { console.log("promise4_1 starts"); setTimeout( () => { resolve("this is promise4_1 resolve"); }, 2000 ); } ); resolve(promise4_1); } ).then( (msg) => { console.log(msg); }, (err) => { console.log(err); } );
|
这里,我故意营造了一个resolve(Promise Object)的例子(也就是promise4_1),这样的话then()会等到这个Promise Object自身的异步流程处理结束后再回调,这相当于为promise4异步流程节外生枝了promise4_1,等枝叶长成后再回到promise4主干继续向后链式处理。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
| // 链式resolve var promise5 = new Promise( (resolve, reject) => { var promise4_1 = new Promise( (resolve, reject) => { console.log("promise5_1 starts"); setTimeout( () => { resolve("this is promise5_1 resolve"); }, 2000 ); } ); resolve(promise4_1); } ).then( (msg) => { console.log(msg); var promise5_2 = new Promise( (resolve, reject) => { console.log("promise5_2 starts"); setTimeout( () => { resolve("this is promise5_2 resolve"); }, 2000 ); } ); return promise5_2; } ).then( (msg) => { console.log(msg); throw new Error(); } ).catch( () => { console.log("exception catched after promise5_2 resolved"); } );
|
这个例子变得再复杂一些,除了在promise5中节外生枝promise5_1异步处理2秒,在2秒后回到主干后的.then()环节,我通过return返回一个Promise对象再次节外生枝promise5_2异步执行2秒,之后再次回到主干的.then()打印出消息并且抛出了异常,最终由catch捕获。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
| // 并行+链式promise var promise6 = new Promise( (resolve, reject) => { var promiseArr = []; for (var i = 0; i < 5; ++i) { promiseArr.push(new Promise( (resolve, reject) => { console.log(`promise6_${i} starts`); ((index) => { // 闭包处理i setTimeout( () => { console.log(`before promise6_${index} resolved`); resolve(`this is promise6_${index} resolve`); }, index * 1000 ); })(i); } )); } resolve(Promise.all(promiseArr)); } ).then( (msgArr) => { console.log(`promise6 all resolved ${msgArr}`); } );
|
这个例子主要是体验Promise.all(),这个函数其实创建返回了一个Promise对象,内部管理与并发了多个Promise流程(节外生枝了N个树叉),它等待它们全部完成或者任意失败之后会终结自己,在外层通过resolve将Promise.all()返回的集合式Promise对象串联(托管)起来,最终进入下一个then从而可以访问N个树叉的结果集合。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| // .then()隐式包装resolved Promise var promise7 = new Promise( (resolve, reject) => { var promise7_1 = new Promise( (resolve, reject) => { console.log("promise7_1 starts"); setTimeout( () => { resolve("this is promise7_1 resolve"); }, 2000 ); } ); resolve(promise7_1); } ).then( (msg) => { console.log(msg); return "promise7 .then()隐式包装resolved Promise"; }, (err) => { console.log(err); } ).then( (word) => { console.log(word); } );
|
这个例子除了节外生枝外,主要关注在于第1个.then()中return了一个字符串,它实际被隐式的包装成了一个resolved状态的Promise对象返回(这是我想强调的重点),从而继续链式的调用第2个.then()的(word) => {…}回调函数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| // .then()显式包装resolved Promise var promise8 = new Promise( (resolve, reject) => { var promise8_1 = new Promise( (resolve, reject) => { console.log("promise8_1 starts"); setTimeout( () => { resolve("this is promise8_1 resolve"); }, 2000 ); } ); resolve(promise8_1); } ).then( (msg) => { console.log(msg); return Promise.resolve("promise8 .then()显式包装resolved Promise"); }, (err) => { console.log(err); } ).then( (word) => { console.log(word); } );
|
这个例子和上一个例子等价,这里体现了第1个.then()显式调用Promise.resolve返回一个Promise对象,从而第2个.then()回调(word) => {}。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
| // .then()显式包装rejected Promise var promise9 = new Promise( (resolve, reject) => { var promise9_1 = new Promise( (resolve, reject) => { console.log("promise9_1 starts"); setTimeout( () => { resolve("this is promise9_1 resolve"); }, 2000 ); } ); resolve(promise9_1); } ).then( (msg) => { console.log(msg); return Promise.reject("promise9 .then()显式包装rejected Promise"); }, (err) => { console.log(err); } ).catch( (word) => { console.log(word); } );
|
这个例子和上面2个例子相反,我在第1个.then()显式的返回了一个rejected的Promise对象,这是通过Promise.reject包装字符串而成的,因此catch将被调用。
通过最后3个例子,我们应该可以明确的感受到Promise围绕pending,resolved,rejected三个状态实现的异步状态驱动以及串联/并行调用的触发动机与原理。
关于Promise本身的功能就了解这么多,希望后面有机会在React下多多使用,解决一些并发ajax以及串联ajax的异步需求,关键还是找到应用场景进行合理的套用,这是我认为最难的地方。
另外,需要记住Promise是ES6的产物,而未来ES7提出了async/await关键字将对Promise加以利用进一步简化异步编程,它将更接近于协程的理念,更加符合人类的思考习惯,至少我是这么认为的。